25.6V100AH LiFePO4 Battery Pack User manual

Catalogue

1. Introduction	. 1
1.1 Important Safety Instructions	.1
1.2 Brief Introduction	.2
1.3 Product Properties	. 2
2. Product Specification	. 3
2.1 Size and Weight	.3
2.2 Performance Parameter	. 4
2.3 Equipment Interface Instruction	4
2.4 ADD switch definition and description	.5
2.5 CAN/485 interface definition	.7
2.6 LED status indicator	. 8
2.7 Automatic dialing method	. 8
2.8 Battery Management System(BMS)	. 9
BMS Protection and Alarm	. 9
3.Installation and Configuration	10
3.1 Performance Parameter	10
3.1.1 Safety Requirement	10
3.1.2 Environmental requirements	10
3.1.3 Tools and data	11
3.1.4 Technical preparation	11
3.1.5 Unpacking inspection	12
4. Packing list is as follows	13
5. Battery parameter settings on the inverter	14

1. Introduction

1.1 Important Safety Instructions

Danger!

- Please do not put the battery into water or fire, in case of explosion or any other situation that might endanger your life.
- Please connect wires properly while installation, do not reverse connect.
 To avoid short circuit, please do not connect positive and negative poles with conductor on the same device.
- •Please avoid any form of damage to battery, especially stab, hit, trample or strike.

Danger!

- Please shut off the power completely when removing the device or reconnecting wires during the daily use or it could cause the danger of electric shock.
- Please use dry powder extinguisher to put out the flame when encountering a fire hazard, liquid extinguisher could result in the risk of explosion.
- For your safety, please do not arbitrarily dismantle any component in any circumstances. The maintenance must be implemented by authorized technical personnel or our company's technical support. Device breakdown due to unauthorized operation will not be covered under warranty.

Caution!

- •Our products have been strictly inspected before shipment. Please contact us if you find any abnormal phenomena such as device outer case bulging.
- The product shall be grounded properly before use in order to ensure your safety.
- •To assure the proper use please make sure parameters among the relevant device are compatible and matched.
- Please do not mixed-use batteries from different manufacturers, different types and models, as well as old and new together.

Caution!

- Ambient and storage method could impact the product life span, please comply with the operation environment instruction to ensure device works in proper condition.
- •For long-term storage, the battery should be recharged once every 6 months, and the amount of electric charge shall exceed 80% of the rated capacity.
- Please charge the battery in 18 hours after it fully discharged or over-discharging protection mode is activated.
- Formula of theoretical standby time: T=C/I (T is standby time, C is battery capacity, I is total current of all loads).

1

1.2 Brief Introduction

lithium iron phosphate battery system is a standard battery system unit, customers can choose a certain number of lithium battery according to their needs, by connecting parallel to form a larger capacity battery pack, to meet the user's long-term power supply needs. The product is especially suitable for energy storage applications with high operating temperatures, limited installation space, long power backup time and long service life.

1.3 Product Properties

energy storage product's positive electrode materials are lithium iron phosphate, battery cells are managed effectively by BMS with better performance, the system's features as below:

- •The whole module is non-toxic, non-polluting and environmentally friendly;
- Cathode material is made from LiFePO4 with safety performance and long cycle life
- Battery management system with better performance, possesses protection

function like over-discharge, over-charge, over-current, abnormal temperature.

- •Self-management on charging and discharging, Single core balancing function.
- •Intelligent design configures integrated inspection module.
- Flexible configuration, multiple battery modules can be in parallel for expanding capacity and power.
- Flexible configurations allow parallel of multi battery for longer standby time.
- •Self-ventilation with lower system noise.
- •Less battery self-discharge, then recharging period can be up to 10 months during the storage.
- •No memory effect so that battery can be charged and discharged shallowly.
- •With wide range of temperature for working environment, -20 $^{\circ}$ C $^{\sim}$ +55 $^{\circ}$ C, circulation span and discharging performance are well under high temperature.
- Small size and light weight, standard of 19-inch embedded designed module is comfortable for installation and maintenance;

2. Product Specification

2.1 Size and Weight

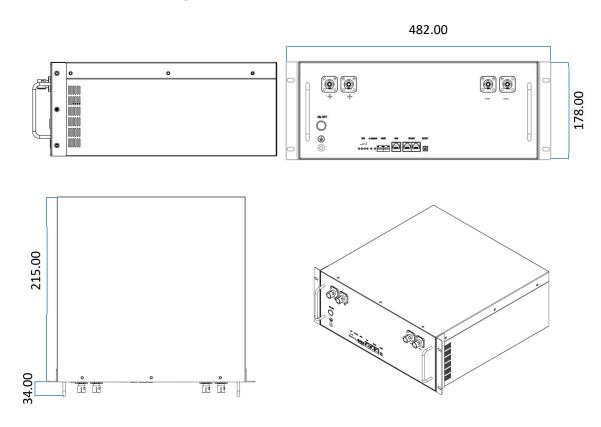


Table 2- 1 Device size

Product	Nominal Voltage	Nominal Capacity	Dimension	Weight
25.6V100AH	DC25.6V	100AH	482*215*178	28.2KG

2.2 Performance Parameter

Table 2-2 performance parameter

Basic Parameters	Numerical
Nominal Voltage (V)	25.6
Nominal Capacity (WH)	2560
Usable Capacity (WH)	2304
Discharge Voltage (V)	23
Charge Voltage (V)	28
Recommend Charge/ Discharge Current (A)	50
Max. Charge/ Discharge Current(A)	100 (3s)
Communicaiton	RS485/CAN/Bluetooth
Working Temperature	0-40℃
Storage Temperature	-20-70℃
Humidity	10%-80%
Certification	CE/ IEC/ UN38.3/ MSDS
Design Life	10 years+
Cycle Life	>6000@90%DOD(25±5°C)

2.3 Equipment Interface Instruction

This section details the front and back interface functions of the lithium battery Product Front Interface:

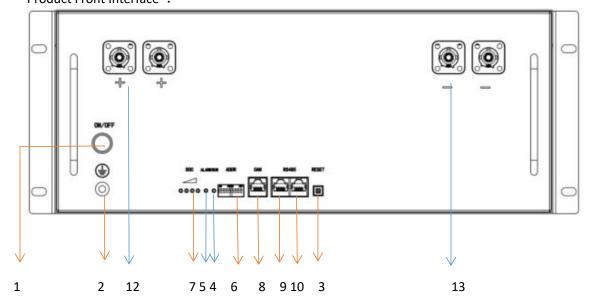


Table 2-3 Inter

Item	Name	Definition
1	Power switch	ON/ OFF, must be in the "ON" state when in use
2	Ground	Grounding connection
3	RESET	Keep pressing for more than 3 seconds, the battery will be restarted
4	RUN	Green light flashing during standby and charging mode. Green light always on when discharging.
5	ALM	Red light flashing when an alarm occurs, red light always on during protection status. After the condition of trigger protection is relieved, it can be automatically closed
6	ADD	DIP switch
7	SOC	The number of green lights shows the remaining power.
8	CAN	Communication cascade port, support CAN
9/10	RS485	Communication cascade port, support RS485
12	Positive socket	Battery output positive or parallel positive line
13	Negative socket	Battery output negative or parallel negative line

2.4 ADD switch definition and description

DIP switch description:

Multi machine communication during parallel connection of battery packs, using DIP switches to distinguish different pack addresses, hardware addresses can be set through the DIP switch on the board.

Definition of DIP switches bit1 to bit8: bit1 to bit4 are used to set host addresses, and bit5 to bit8 are used for the number of slaves.

Host settings: Bit1 to bit4 are 0, and the fixed address of the host is 0. Bit5 to bit8 are set based on the number of parallel slaves (as shown in Table 2).

Slave settings: Bit1 to bit4 are set according to the device order, and the range of slave addresses from 1 to 15. Bit5 to bit8 is fixed to 0 (as shown in Table 1).

DIP switch:

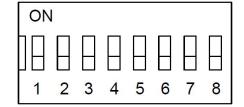
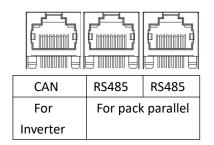


Table 1 Slave Setting

Address		Description			
	#1	#2	#3	#4	
1	ON	OFF	OFF	OFF	Pack1
2	OFF	ON	OFF	OFF	Pack2
3	ON	ON	OFF	OFF	Pack3
4	OFF	OFF	ON	OFF	Pack4
5	ON	OFF	ON	OFF	Pack5
6	OFF	ON	ON	OFF	Pack6
7	ON	ON	ON	OFF	Pack7
8	OFF	OFF	OFF	ON	Pack8
9	ON	OFF	OFF	ON	Pack9
10	OFF	ON	OFF	ON	Pack10
11	ON	ON	OFF	ON	Pack11
12	OFF	OFF	ON	ON	Pack12
13	ON	OFF	ON	ON	Pack13
14	OFF	ON	ON	ON	Pack14
15	ON	ON	ON	ON	Pack15

Table 2 Host setting


Number		Description			
	#5	#6	#7	#8	
2	ON	OFF	OFF	OFF	Number of 2
3	OFF	ON	OFF	OFF	Number of 3
4	ON	ON	OFF	OFF	Number of 4
5	OFF	OFF	ON	OFF	Number of 5
6	ON	OFF	ON	OFF	Number of 6
7	OFF	ON	ON	OFF	Number of 7
8	ON	ON	ON	OFF	Number of 8
9	OFF	OFF	OFF	ON	Number of 9
10	ON	OFF	OFF	ON	Number of 10
11	OFF	OFF	OFF	ON	Number of 11
12	ON	ON	OFF	ON	Number of 12
13	OFF	OFF	ON	ON	Number of 13
14	ON	OFF	ON	ON	Number of 14
15	OFF	ON	ON	ON	Number of 15

For example

Number		DIP switch							
	#1	#2	#3	#4	#5	#6	#7	#8	
1	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	1battery
2	OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF	Host 1
	ON	OFF	OFF	OFF	OFF	OFF	OFF	OFF	Slave 2
3	OFF	OFF	OFF	OFF	OFF	ON	OFF	OFF	Host 1
	ON	OFF	OFF	OFF	OFF	OFF	OFF	OFF	Slave 2
	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF	Slave 3

2.5 CAN/485 interface definition

	PIN position	Color	Definition
	PIN1	Orange/White	485B1
	PIN2	Orange	485A1
	PIN3	Green/White	GND
DC 40F	PIN4	Blue	NC
RS485	PIN5	Blue/White	NC
	PIN6	Green	GND
	PIN7	Brown/White	485A2
	PIN8	Brown	485B2
	PIN1	Orange/White	NC
	PIN2	Orange	NC
	PIN3	Green/White	NC
CAN	PIN4	Blue	CANH
CAN	PIN5	Blue/White	CANL
	PIN6	Green	NC
	PIN7	Brown/White	GND
	PIN8	Brown	NC

2.6 LED status indicator

Battery Status	Running Status	RUN	ALM	•	•	s	ос	•	•	Remark	
Shutdown	Sleep	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	All off	
Standby	Normal	Flash1	OFF	OFF	OFF	OFF	OFF	OFF	OFF	Standy	
	Normal	ON	OFF			- 41				Maximum	
	Overcurrent	ON	FLASH2	According to the remaining battery				LED			
	ALM	ON	FLASHZ	indicator			flashing 2				
	Overvoltage	Flash1	OFF	OFF	OFF	OFF	OFF	OFF	OFF		
Charge	Protection	Flashi	UFF	UFF	OFF	FF OFF	011	OFF	UFF		
Charge	Temperature	Flash1	Flash1								
	and			Flash1	Flash1	OFF	OFF	OFF	OFF	OFF	OFF
	Overcurrent	Hashi				011	011	011		011	011
	Protection										
	Normal	FLASH3	OFF	Acco	rding t	o the	remair	ning ba	attery		
	ALM	FLASH3	FLASH3	indica	ator						
Discharge	Protection	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF		
Discharge	Undervoltage	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF		
	Protection	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF		

Flash Description

Flashing mode	ON	OFF
Flash 1	0.25s	3.75s
Flash 2	0.5s	0.5s
Flash 3	0.5s	1.5s

2.7 Automatic dialing method

The schematic diagram of automatic dialing connection is as follows:

2.8 Battery Management System(BMS)

BMS Protection and Alarm

Over Voltage Alarm/Protection in Charging:

When total voltage or any battery cell voltage reaches the rated

alarm value during charging stage, the alarm light will flash. When reaches the rated protection value, the alarm light will on, battery will stop charge. After total voltage or all cell voltage back to rated range, the protection is over

Low Voltage Protection in Discharging:

Battery system will stop supply power to the outside, when any battery cell voltage or total voltage is lower than the rated protection value during discharging, the over-discharging protection is activated. When the voltage of each cell back to rated return range, the protection is over.

Over Current Protection in Charging:

When the charge current > 110A, current limit protection mode is activated, current will be limited to 10A, protection is removed after rated time delaying 5 min. Circulate like this until the current is lower than 110A.

Over Current Protection in Discharging:

When the discharge current is lower than -110A, the system stops discharging after 10s. After protection, the discharging will restore in 60s delay or immediately when there is charging current.

Low/Over temperature protection in charging:

When battery's temperature is beyond range of -10 $^{\circ}$ C $^{\circ}$ +55 $^{\circ}$ C during charging, temperature protection is activated, device stops charging.

The protection is over when temperature back to rated working range.

Low/Over temperature protection in discharging:

When battery's temperature is beyond range of -15 $^{\circ}$ C $^{\sim}$ +55 $^{\circ}$ C during discharging, temperature protection is activated, device stops supplying power to the outside.

The protection is over when temperature back to rated working range.

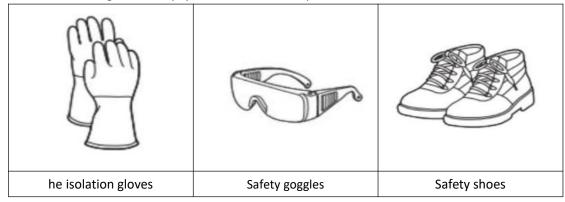
Short Circuit Protection:

When the battery is activated from the shutdown state, if a short circuit occurs, the system starts short-circuit protection for 60 seconds.

Self-Shutdown:

When device connects no external loads and power supply and no external communication for over 48 hours, device will dormant standby automatically.

3.Installation and Configuration


3.1 Performance Parameter

3.1.1 Safety Requirement

This system can only be installed by personnel who have been trained in the power supply system and have sufficient knowledge of the power system.

The safety regulations and local safety regulations listed below should always be followed during the installation.

- All circuits connected to this power system with an external voltage of less than 48V must meet the SELV requirements defined in the IEC60950 standard.
- If operating within the power system cabinet, make sure the power system is not charged. Battery devices should also be switched off.
- Distribution cable wiring should be reasonable and has the protective measures to avoid touching these cables while operating power equipment.
- when installing the battery system, must wear the protective items below:

3.1.2 Environmental requirements

Working temperature: 0°C ~+40°C

Charging temperature range is 0C~+40 $^{\circ}\mathrm{C}$, Discharging temperature range is 0 $^{\circ}\mathrm{C}$ ~+40 $^{\circ}\mathrm{C}$

Storage temperature: $-20\,^{\circ}\text{C}^{-} + 70\,^{\circ}\text{C}$ Relative humidity: $10\% \sim 80\%\text{RH}$ Elevation: no more than 3000m

Operating environment: Indoor installation, sites avoid the sun and no wind, no conductive

dust and corrosive gas.

And the following conditions are met:

- Installation location should be away from the sea to avoid brine and high humidity environment.
- The ground for product arrangement shall be flat and level.
- No flammable explosive materials near the installation site.
- The optimal ambient temperature is 20 $^{\circ}$ C $^{\sim}$ 30 $^{\circ}$ C
- Keep away from dust and messy zones

3.1.3 Tools and data

Tools and meters that may be used are shown in table 3-1.

Table 3-1 Tool instrument

NAME				
Screwdriver (Slotted, Phillips)	Multimeter			
Torque wrench	Clamp current meter			
Diagonal pliers	Insulation tape			
Pointed nose pliers	Temperature meter			
Pliers to hold the wire	Anti-static bracelet			
Stripping pliers	Cable tie			
Electric drill	Tape measure			

3.1.4 Technical preparation

Electrical interface check

Devices that can be connected directly to the battery can be user equipment, power supplies, or other power supplies.

- Confirm whether the user's PV power generation equipment, power supply or other power supply equipment has a DC output interface, and measure whether the DC power output voltage meets the voltage range requirements in Table 2-2.
- Confirm that the maximum discharge current capability of the DC power interface of the user's photovoltaic power generation equipment, power supply or other power supply equipment should be higher than the maximum charging current of the products used in Table 2-2.

If the maximum discharge capacity of the DC power interface of the user's photovoltaic power generation equipment is less than the maximum charging current of the products used in Table 2-2, the DC power interface of the user's photovoltaic power generation equipment shall have a current limiting function to ensure the normal operation of the user's equipment.

• Verify that the maximum operating current of the battery-powered user equipment (inverter DC input) should be less than the maximum discharge current of the products

used in Table 2-2.

The security check

- Firefighting equipment should be provided near the product, such as portable dry powder fire extinguisher.
- Automatic fire fighting system shall be provided for the case where necessary.
- No flammable, explosive and other dangerous materials are placed beside the battery.

3.1.5 Unpacking inspection

- When the equipment arrives at the installation site, loading and unloading should be carried out according to the rules and regulations, to prevent from being exposed to sun and rain.
- Before unpacking, the total number of packages shall be indicated according to the shipping list attached to each package, and the case shall be checked for good condition.
- In the process of unpacking, handle with care and protect the surface coating of the object.
- Open the package, the installation personnel should read the technical documents, verify the list, according to the configuration table and packing list, ensure objects are complete and intact, if the internal packing is damaged, should be examined and recorded in detail.

4. Packing list is as follows

Item	Specification	Quantity	Figure
Battery	25.6V/100AH	/	
Positive Cable to inverter	Red/25mm² /L2000mm	/	
Negative Cable to inverter	Black/25mm² /L2000mm	/	
Positive Cable for parallel	Red/25mm² /L200mm	/	
Negative Cable for parallel	Black/25mm² /L200mm	/	
Communication Cable for parallel	L300mm	/	
Communication Cable to inverter	L2000mm	/	
User Manual		/	

5. Battery parameter settings on the inverter

If your inverter do not have communication function with 25.6V100AH battery pack, please set inverter follow next data.

Max Charging(Bulk) Voltage: 28V

Absorption Voltage: 28V Float Voltage: 27.5V

Shut Down(cut off) Voltage: 23V Shut Down(cut off) SOC: 5%

Recommend Charge/ Discharge Current: 50A

Max Charge Current : 100A(3s)
Max Discharge Current : 100A(3s)